Adaptive Finite element solution for Volterra partial integro differential equations
نویسندگان
چکیده
منابع مشابه
Analytical-Approximate Solution for Nonlinear Volterra Integro-Differential Equations
In this work, we conduct a comparative study among the combine Laplace transform and modied Adomian decomposition method (LMADM) and two traditional methods for an analytic and approximate treatment of special type of nonlinear Volterra integro-differential equations of the second kind. The nonlinear part of integro-differential is approximated by Adomian polynomials, and the equation is reduce...
متن کاملFinite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کاملSplitting Methods for Partial Volterra Integro-Differential Equations
The spatial discretization of initial-boundary-value problems for (nonlinear) parabolic or hyperbolic PDEs with memory terms leads to (large) systems of Volterra integro-differential equations (VIDEs). In this paper we study the efficient numerical solution of such systems by methods based on linear multistep formulas, using special factorization (or splitting) techniques in the iterative solut...
متن کاملAdaptive Finite Element Methods for Partial Differential Equations
The numerical simulation of complex physical processes requires the use of economical discrete models. This lecture presents a general paradigm of deriving a posteriori error estimates for the Galerkin finite element approximation of nonlinear problems. Employing duality techniques as used in optimal control theory the error in the target quantities is estimated in terms of weighted ‘primal’ an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Advanced Computational Science with Applications
سال: 2019
ISSN: 2196-2499
DOI: 10.5899/2019/cacsa-00062